Math 217 Fall 2025 Quiz 14 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose U is a vector space and $u_1, u_2, \ldots, u_n \in U$. The span of (u_1, u_2, \ldots, u_n) is ...

Solution: The set of all linear combinations of the vectors:

$$Span(u_1,...,u_n) = \{ a_1u_1 + \cdots + a_nu_n \mid a_1,...,a_n \in \mathbb{F} \},$$

where \mathbb{F} is the underlying field (e.g. \mathbb{R} or \mathbb{C}).

(b) A subspace of a vector space V is . . .

Solution: A nonempty subset $W \subseteq V$ such that:

- $0_V \in W$;
- if $w_1, w_2 \in W$, then $w_1 + w_2 \in W$ (closed under addition);
- if $\alpha \in \mathbb{F}$ and $w \in W$, then $\alpha w \in W$ (closed under scalar multiplication).

Furthermore, W is a vector space under the operations inherited from V.

(c) To say that a list of vectors (x_1, x_2, \ldots, x_d) in a vector space X is linearly independent means ...

Solution: The only scalars $a_1, \ldots, a_d \in \mathbb{F}$ satisfying

$$a_1x_1 + \dots + a_dx_d = 0_X$$

are $a_1 = \cdots = a_d = 0$. Equivalently, no x_j can be written as a linear combination of the others.

2. Let V be a vector space, and let $S = (w_1, w_2, \ldots, w_m)$ be a list of vectors in V that spans V. Suppose that some $w_j \in S$ is in the span of the list $S \setminus \{w_j\} := (w_1, \ldots, w_{j-1}, w_{j+1}, \ldots, w_m)$. Prove that $S \setminus \{w_j\}$ also spans V.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

Solution: Because S spans V, for any $v \in V$ there exist scalars $a_1, \ldots, a_m \in \mathbb{F}$ such that

$$v = a_1 w_1 + \dots + a_{j-1} w_{j-1} + a_j w_j + a_{j+1} w_{j+1} + \dots + a_m w_m.$$

By hypothesis w_j is a linear combination of the other vectors, i.e., there exist scalars c_i $(i \neq j)$ with

$$w_j = \sum_{i \neq j} c_i \, w_i.$$

Substitute this into the expression for v:

$$v = \sum_{i \neq j} a_i w_i + a_j \left(\sum_{i \neq j} c_i w_i \right) = \sum_{i \neq j} \left(a_i + a_j c_i \right) w_i.$$

Thus v is a linear combination of the vectors in $S \setminus \{w_j\}$. Since $v \in V$ was arbitrary, $S \setminus \{w_j\}$ spans V.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Let V be a vector space, and let S be a linearly independent list of vectors in V. For any $v \in V \setminus S$, we have that $S \cup \{v\}$ is linearly independent and $v \in \text{Span}(S)$.

Solution: FALSE. Both assertions cannot hold simultaneously for an arbitrary v. Counterexamples:

- Take $V = \mathbb{R}^2$, $S = \{[1, 0]^T\}$, and $v = [0, 1]^T$. Then $S \cup \{v\}$ is linearly independent, but $v \notin \text{Span}(S)$.
- Take $V = \mathbb{R}^2$, $S = \{[1, 0]^T\}$, and $v = [2, 0]^T$. Then $v \in \text{Span}(S)$, but $S \cup \{v\}$ is linearly dependent.

In general, $S \cup \{v\}$ is linearly independent iff $v \notin \text{Span}(S)$.

(b) The kernel of the matrix

$$A = \begin{bmatrix} 1 & -21 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is two dimensional.

Solution: FALSE. Solve $A\mathbf{x} = \mathbf{0}$ with $\mathbf{x} = (x_1, x_2, x_3)^T$:

$$\begin{cases} x_1 - 21x_2 = 0 \implies x_1 = 21x_2, \\ x_3 = 0. \end{cases}$$

Let $t := x_2$ be free. Then $\mathbf{x} = t(21, 1, 0)^T$. The solution set is a one-dimensional subspace of \mathbb{R}^3 , so ker A is 1-dimensional, not 2-dimensional.